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Abstract 

In this paper, we obtain sharp coefficient bounds for functions analytic in the unit 
disc U and belonging to the class ( ) 0,,, ≠α bMbR  is a complex number, .0≥α  

1. Introduction 

Let A denote the class of functions 
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which are analytic in the unit disc U. Also denote by S the subclass of A, 
consisting of all univalent functions in U. Let Ω  denote the class of 
bounded analytic functions w in U satisfying the conditions ( ) 00 =w  and 

( ) zzw ≤  for .Uz ∈  For ,Af ∈  we say that f belongs to the class 

( ) ( ,0, ≠bMbF  complex, ),21>M  of bounded starlike functions of 

complex order, if and only if ( ) 0≠z
zf  in U and for fixed M, 
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The class ( )MbF ,  was studied by Nasr and Aouf [6]. 

In the present paper, we consider the class ( )MbR ,,α  of functions 

,Af ∈  satisfying the condition 
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where ,0≠b  complex. We note that ( ) ( ) RRR ==∞ 1,1,1  [5] and 

( ) ( )10,1,1 <α≤=∞α− αRR  (Ahuja [1]). 

We can easily show that ( ),,, MbaRf ∈  if and only if there exists a 

function Ω∈w  such that [3] 
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Thus, from (1.4), it follows that ( )MbRf ,,α∈  if and only for Uz ∈  
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We shall need the following lemmas in our investigation: 
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Lemma 1.1 ([7]). Let the function w defined by 

( ) ,
1

k
k

k
zczw ∑

∞

=

=   (1.6) 

be in the class .Ω  Then 11 ≤c  and .1 2
12 cc −≤  

Lemma 1.2 ([2]). Let the function w defined by (1.6) be in the class .Ω  
Then 

{ },,1max2
12 µ≤µ− cc   (1.7) 

for any complex number .µ  Equality in (1.7) may be attained with the 

functions ( ) 2zzw =  and ( ) zzw =  for 1<µ  and ,1≥µ  respectively. 

Lemma 1.3 ([4]). If ( ) "+++= 2
211 1 zczczp  is an analytic function 

with positive real part in ,∆  then 
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when 0<v  or ,1>v  the equality holds if and only if ( )zp1  is 

( ) ( )zz −+ 11  or one of its rotations. If ,10 << v  then equality holds if 

and only if ( )zp1  is ( ) ( )22 11 zz −+  or one of its rotations. If ,0=v  

then equality holds if and only if 
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or one of its rotations. If ,1=v  then equality holds if and only if ( )zp1  is 

the reciprocal of one of functions such that the equality holds in the case of 
.0=v  Also, the above upper bound is sharp and it can be improved as 

follows when :10 << v  

( ),210,22
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2
12 ≤<≤+− vcvvcc  
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and 

( ) ( ).121,21 2
1

2
12 ≤<≤−+− vcvvcc  

2. Main Result 

Theorem 2.1. Let the function f defined by (1.1) be in the class 
( ).,, MbR α  Then 

(a) for any complex number ,µ  we have 
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(b) 

( )
[( ) ( ) ( )( )( ) ]

( )

( )
[( ) ( ) ( )( )( ) ]















σ≥µ+α+−µα+−+α+
α+

−

σ≤µ≤σ
α+

+

σ≤µ+α+−µα+−+α+
α+

≤µ−

,,1122211
1

2
,,2

12

,,1122211
1

2

2
2

2

21

1
2

2

2
23

ifbmm

ifbm

ifbmm

aa  

(2.2) 

where 

( ) ( ) ( ) ( )
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The result is sharp. 
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Proof. Since ( ),,, MbRf α∈  we have 
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and then comparing the coefficients of z and 2z  on both sides of (2.4), we 
have 
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and therefore, 
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When µ  is a complex number, applying Lemmas 1.1 and 1.2 in (2.5), we 

get (2.1) in Theorem 2.1(a). 
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Our results now follows by applying Lemma 1.2 in (2.5). The result is 

sharp for the function defined by 
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Theorem 2.1(b) now follows by an application of Lemma 1.3 in (2.5). To 

show that these bounds are sharp, we define the functions φ
δK  

( )…,3,2=δ  by 
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and the function γF  and ( )10 ≤γ≤γG  by 
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and 
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Obviously, the functions ( ).,,,, MbRGFK α∈γγ
φ
δ  Also we write 

.: 2
φφ = KK  If 1σ<µ  or ,2σ>µ  then equality holds if and only if f is φK  

or one of its rotations. When ,21 σ<µ<σ  then equality holds if and only 

if f is φ
3K  or one of its rotations. If ,1σ=µ  then equality holds if and 

only if f is γF  or one of its rotations. If ,2σ=µ  then equality holds if and 

only if f is γG  or one of its rotations. 

If ,21 σ≤µ≤σ  in view of Lemma 1.3, Theorem 2.1(b) can be 

improved. Let ( )zf  given by (1.1) belongs to ( )MbR ,,α  and 3σ  is given 

by 
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